
IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Cascade Directional Filter*
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Surnrrzarg-A directional filter is a completely matched four-port

which exhllits a ckeetional and a filter-like frequency characteristic.

This paper explores the properties of N-directional filters connected

in cascade through sections of transmission lines. Analysis shows

that if a directional filter admits the equivalent circuit representation

offered here, its transfer functions are functions of only one parame-

ter, a susceptsnce function. When the directional filters are cascaded

in a certain way, the over-all transfer functions have the same form

as before except that the susceptance function is now the sum of the

susceptance functions of the component filters. The last property is

an important one. Given a transfer function expressed in terms of a

susceptance function, the network designer can expand the suscep-

tance in partial fraction and realize the transfer function using direc-

tional filters in cascade, each being characterized by a much simpler

susceptance.

INTRODUCTION

A

clirectional filter is a completely matched four-port

which exhibits a directional and a filter-like fre-

quency characteristic. It may take any of several

different physical forms. l–~ In all cases, it has the follow-

ing well-known properties:

1)

2)

3)

It is reflectionless, i.e., all four-ports are matched

when they are terminated in their own character-

istic impedances.

It is directional, i.e., signal entering into port 1

emerges at ports 2 and 3, none at 4, etc.

The transfer function between ports 1 and 2 and

that between 1 and 3 are complements of each

other, i.e., if one has a band-pass characteristic,

the other has a band-elimination characteristic.

This paper- explores the properties of N directional

filters connected in cascade through sections of trans-

mission line. Analysis shows that if a directional filter

admits the equivalent circuit representation offered

here, its transfer functions are functions of one param-

eter, a susceptance function. When the directional filters

are ctiscaded in a certain way, the over-all transfer

functions have the same form as before except that the
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susceptance function is now the sum of the susceptance

functions of the component directional filters. The ‘[ast

property is an important one, for it offers the network

designer flexibility and convenience in realizing a transf-

er function. Given a transfer function in a form suitable

for realization in a directional filter, he can synthesize

the network using several directional filters in cascade,

each being characterized by a much simpler susceptance

function.

TRANSFER FUNCTIONS OF A DIRECTIONAL FILTER.

Let a directional filter admit an equivalent repre-

sentation shown in Fig. 1. It consists of four two-port

L I
Fig. l—Schematic diagram of a directional filter.

networks inter-connected to form a network having two

input terminals and two output terminals, IFor a reason

which will be apparent later, the two series two-ports

are characterized by their A B CD matrix and the two

shunt two-ports are characterized by their short-circuit

admittance matrix. Since we are interested in connecting

N of these networks in cascade, the obvious characteriz-

ation of the filter is the generalized .4 B CD matrix:

In practice, the two shunt two-ports are identical and

the two series two-ports are sections of transmission

lines h,/4 and 3h/4 long. As shown in Appendix 1, under

these conditions the generalized AB CD matrix takes the

following form:



19&1

M=

where
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jzAY22 ‘ZAYIZ ‘jzL 0

– j.zBY12 ‘jzByll o izB

1

‘j ~ — j.zAy;2 + jzBy;2 jzBylly12 – jzAy12y22 jzAy22 – jzByl!

1
‘jzAy22y12 + jzBy12yll — – jzAy~l + jzByfl

ZB
jzAy12– jzByl

2A= characteristic impedance of transmission line 1.

ZB = characteristic impedance of transmission line 2.

yn, Y12, Y22= short-circuit admittance parameters of

the two-port.

In operation, the ports are terminated in their own

characteristic impedances, so that the terminal voltages

and current satisfy a set of constraints given by

VI = E – IIZA

~, = ZA12

~3 = – ZB13

V4 = ZB14. (3)

We shall now derive the four transfer voltage ratios

and from these deduce the necessary and sufficient con-

ditions that the parameters of Y1l, YM, and Y2Z must

satisfy in order to realize the directional and reflection-

less properties mentioned’ earlier. As shown in Appendix

II, we have

V, jzByI@ByH – zAy22)
—. (4)
E A

where

A = (2 + ZAjJ~t+ ZBY1l+ ZAZBY11Y2Z – .ZA.ZBY;2)2. (5)

It is clear from (4) that the directional property is

realized if

.zByll = ZLyW. (6)

Using (6) we find

VI z+4zAy,2+zziyiz +Z~y~2(ZAY22–ZAYf2/YU)—— —
E A

The reflectionless property is realized if

ylly22= Y:2

for then 171/E = ~, and port 1 is matched.

well-known theorem5 on the properties of

coupler, all four ports are matched.

(7)

In fact, by a

a directional

Eq. (7) restricts the structure of the two-terminal net-

work to be one whose usual open circuit impedance

f’ The theorem states that if a symmetrical four-port possesses the
directional property and is matched at one of its ports, all four ports
are matched.

o I Y I

April

(2)

o

PORT I PORT 2

Y I o

Fig. 2—The simplest realization of the shunt two-port.

parameters do not exist. The simplest realization of the

network is one which has only series admittance as

shown in Fig. 2.

Using (6) and (7), we find the other two transfer

voltage ratios to be

1

d--

ZB zByll.—— —_
2 2A 1 + .ZBy~~

(9)

It is seen that the two voltages are 90° out of phase

—a well-known property of directional couplers. More-

over, let Pz be the power delivered to the load 2A at

port 2 and Ps be that to Z~ at port 3. Then using (8)

and (9), we have

~2
P2+P3=—= constant.

42A

The two transfer characteristics are therefore comple-

ments of each other. In particular, if yzz is a simple

resonant circuit, Vz/E exhibits a band elimination char-

acteristic while Vt/E one of the bandpass.

The above analysis shows that a directional filter is

completely characterized by one parameter, the sus-

ceptance function y,z (or alternately, yll), as asserted

earlier. Except for the factor —j, in all aspects, T’JE as

given by (8) is much like the transfer function of a con-

stant-resistance bridge-T network.G

CASCADE DIRECTIONAL FILTER

If the two-port network parameters satisfy (6) and

(7), the ABCD matrix, M, is simplified to the following:

s H. tkT. Bode, “Network Analysis and Feedback Amplifier De-
sign, ” D. Van Nostrand Co., New York, NT. Y., p. 272; 1945.
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[
( z;

zByll zAyll – zA
z

—

M=j

I

1 0

‘ZBYH

0

0

zByll

If we are to connect a transmission line of length

~h to port t and one 2A to port 4 (Fig. 3), the over-all

AB CD matrix becomes

which is of the form

r
I 1 0

0 d“25
1 zAzByll ~ ‘zB2y11

p =
~B

d--
zB—— yll – yll -z; 1 0

z~
——

1/

ZB
–yll — –yll o 1

zA

‘r.zB
—zAzByll ZAZByll ~

where

10
1= [101

[

—

[
– -ZAZB ZAZB ~

‘=lzAzB /’:- _zB2zB 1

(lo)

(11)

Note that DE= O, and ED= O.

Let us next cascade N – 1 such structures, the first

characterized by PI, the second Pz, etc. The over-all

matrix becomes

where

y’ = y:) + Y(:; + . . . + Y:;--l’.

~=_[ $ E
1

Finally, to (N – 1) such structures we must add, at the

end, one more directional filter to complete an N-section

1/=

ZB
cascade directional filter. The over-all network is shown

1
in Fig. 4 and the over-all generalized ABCD matrix is

2A given by

MPN–lPY-z . ~ ‘pl=MiLyfn=’

ZB Y d-ZAY $ –.zA o
‘

d“-–ZBY ; –ZBY o Zr.j

1
— o zB Y

{-
‘zBY 2

Z.4 zA

1
0

d’
z.4Y ~ –ZBY

z

(12)
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Fig. &—-One unit of a cascade directional filter.
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Fig. 4—An N-section cascade directional filter.

where

Comparing (12) with the AB CD matrix for one direc-

tional filter, we see that both are the same except yn

in (10) is replaced by Y. Therefore the cascade direc-

tional filter is equivalent to one directional filter whose

susceptance function yn (or yzz) is the sum of the sus-

ceptance functions of the component directional filters.

The voltage ratios for a cascade directional filter are

174
—. o
E

VI 1
—=—
E2

(13)
V2 .7’ 1
—.— —
E 2 I+zB[yfi)+. ..+ y:)]

V3 1

‘v’”_

zB zB [y::+ - “ “ + Yi:)]
—= ——
E 2 z 1 + zB[y::) + . . e + y::)]

. (14)

Eqs. (13) and (14) suggest that in synthesis, the de-

sired susceptance Y should be expanded in the Foster’s

partial fraction form, each fraction being realized by

one directional filter whose yll is a simple resonant cir-

cuit.

In the special case in which all yt,’s are identical

resonant circuits, the loaded Q of an N-section cascade

directional filter is l/N times the loaded Q of one direc-

tional filter.

REMARKS

This paper has considered only one particular way

of cascading the directional filters, namely, they are

separated by two sections of transmission line $A and

$h long as shown in Fig. 3, With different lengths, the

over-all four-port may have other interesting prop-

~rties.

The analysis given here is applicable only to direc-

tional filters which admit the equivalent circuit repre-

sentation shown in Fig. 1. As evident from the figure,

the unavoidable junction effect in a practical realization

has been completely ignored. Moreover, the length of

the sections of transmission line may be frequency de-

pendent, as in the case of a hollow guide. In that case,

the results contained here are valid only in the “im-

mediate” neighborhood of the average resonant fre-

quency of the various y’s. A complete analysis is very

complicated even for first-order apprOXhIIatiOII.We
shall leave this problem to an enterprising graduate stu-

dent.

APPENDIX I

DERIVATION OF (2)

With reference to Fig. 1, the two series two-ports,

which are sections of transmission line ~h and 2A long,

are characterized by their respective A B CD matrix as

follows :

.

As stated in the text, let the two identical shunt two-

ports be characterized by the short-circuit admittance

parameters:

The te~nainal conditions are

VIA = V2C= VI

V2A= V2D= V2

Vii?= Vlc = V3

V2B= VID= v*

11A= 11– 12rJ

12= 12A—12~
Im = 13– Ilc

14= 12B- ?ID$

(17)

(18)

(19)



. .,. —
1959 Wing: Cascade

+8 J2 E

Fig. 5—The signal flow graph of a directional filter (see Fig. 1).

Algebraic manipulation of (15)–(19) to eliminate all

variables except VI, Vz, V3, Vi, 11, 12, 13 and 1A leads to

(2) in the text. Alternately, one can employ the tech-

nique of signal flow graph.7’8 Fig. 5 shows the signal

flow graph which corresponds to (15)–(19). Eq. (2) is

obtained by finding the ‘(gains” in the following man-

ner:

~ II = gain from ~1 to ~2 = j.2Ay22

A12 = gain from V3 to V2= jZAy12

Bll = gain from 11 to V2 = – jzA

APPENDIX II

DERIVATION OF (4)-[9)

The constraints given by (3), which are the terminat-

ing conditions on each port, are

VI = E – 11.ZA

V2 = ZA12

V3 = – ZB13

V4 = ZB14.

Using these equations and those expressed by (2), one

7 S. Mason, “Properties of signal flow graph, ” PROC. IRE, vol. 41,

pp. 1144–1 156; September, 1953.
8 S. Mason, “Further properties of signal flow graph, ” PROC. IRE,

vol. 44, pp. 920–926; July, 1956.
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Fig. 6—The signal flow graph of a terminated directional filter.

Fig. 7—The simplified version of Fig. 6.

can eliminate all current variables and obtain a set of

four equations in four unknowns, VI, Vz, V,, V4. Solving

for each in terms of E, we have (4)–(9). The algebra is

straightforward though extremely involved. ‘The author

is convinced that the signal flow graph technique is

superior.

With reference to Fig. 5, we first invert7 the paths

from Vz to 11 and from VA to Ia. Adding the constraints

of (3) to the “inverted” flow graph, we lhave Fig. 6.

Fig. 6 can be simplified, and the final form is shown

in Fig. 7, from which the various “gains’7 as expressed

by (4)–(9) are obtained by inspection.


