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Cascade Directional Filter*
OMAR WING#

Summary—A directional filter is a completely matched four-port
which exhibits a directional and a filter-like frequency characteristic.
This paper explores the properties of N-directional filters connected
in cascade through sections of transmission lines. Analysis shows
that if a directional filter admits the equivalent circuit representation
offered here, its transfer functions are functions of only one parame-~
ter, a susceptance function. When the directional filters are cascaded
in a certain way, the over-all transfer functions have the same form
as before except that the susceptance function is now the sum of the
susceptance functions of the component filters. The last property is
an important one. Given a transfer function expressed in terms of a
susceptance function, the network designer can expand the suscep-
tance in partial fraction and realize the transfer function using direc-
tional filters in cascade, each being characterized by a much simpler
susceptance.

INTRODUCTION

directional filter is a completely matched four-port
A which exhibits a directional and a filter-like fre-
quency characteristic. It may take any of several
different physical forms.™* In all cases, it has the follow-
ing well-known properties:

1) It is reflectionless, 7.c., all four-ports are matched
when they are terminated in their own character-
istic impedances.

2) It is directional, i.e., signal entering into port 1
emerges at ports 2 and 3, none at 4, etc.

3) The transfer function between ports 1 and 2 and
that between 1 and 3 are complements of each
other, i.e., if one has a band-pass characteristic,
the other has a band-elimination characteristic.

This paper explores the properties of N directional
filters connected in cascade through sections of trans-
mission line. Analysis shows that if a directional filter
admits the equivalent circuit representation offered
here, its transfer functions are functions of one param-
eter, a susceptance function. When the directional filters
are cascaded in a certain way, the over-all transfer
functions have the same form as before except that the
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New York 14, N. Y., in the summer of 1957.
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susceptance function is now the sum of the susceptance
functions of the component directional filters. The last
property is an important one, for it offers the network
designer flexibility and convenience in realizing a trans-
fer function. Given a transfer function in a form suitable
for realization in a directional filter, he can synthesize
the network using several directional filters in cascade,
each being characterized by a much simpler susceptance
function.

TrANSFER FUNCTIONS OF A DIRECTIONAL FILTER

Let a directional filter admit an equivalent repre-
sentation shown in Fig. 1. It consists of four two-port
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Fig. 1—Schematic diagram of a directional filter.

networks inter-connected to form a network having two
input terminals and two output terminals. For a reason
which will be apparent later, the two series two-ports
are characterized by their A BCD matrix and the two
shunt two-ports are characterized by their short-circuit
admittance matrix. Since we are interested in connecting
IV of these networks in cascade, the obvious characteri-
zation of the filter is the generalized A BCD matrix:

171 Au Ay Bu Bp V™

[Vs_‘ _ “Am daz B Ba || Va

Lzl J - Lcn Ci Du Dy || I @
I3 Cu Co Do Dp LI,

In practice, the two shunt two-ports are identical and
the two series two-ports are sections of transmission
lines A/4 and 3\/4 long. As shown in Appendix I, under
these conditions the generalized A BCD matrix takes the
following form:
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L iZ4Y12 —jZa 0 ]
—jZBY —jZeyu 0 iZg
= 1 . . . -
M = —j 7 —]'ZAyiz +jZBy122 jZBynyw — ]ZAylzyzz ]ZAyzz - ]ZBylz (2)
4
VY T . :
—jZAy22y12 + jZBy12y11 Z_ — jlayn +jiZsyn ]ZAym — jZBY11
L B -
where o V1 o
Z 4 =characteristic impedance of transmission line 1. rorr 1 o 2
Zp=characteristic impedance of transmission line 2.
Y11, Y12, Y2 =short-circuit admittance parameters of o v o

the two-port.

In operation, the ports are terminated in their own
characteristic impedances, so that the terminal voltages
and current satis{y a set of constraints given by

Vi=E— 1,74

Vo= Zal,

Vs = — Zgl;

Vi= Zpl.. (3)

We shall now derive the four transfer voltage ratios
and from these deduce the necessary and sufficient con-
ditions that the parameters of vy, ¥, and ¥, must
satisfy in order to realize the directional and reflection-
less properties mentioned earlier. As shown in Appendix
II, we have

Ve 7Zsy12(Zpy11 — Zayes) @
E A
where
2 2
A= 24 Zayee + Zpyu + ZaZpyuyse — ZaZpyis) . ()

It is clear from (4) that the directional property is
realized if

ZByll = ZAyzz- (6)
Using (6) we find
2 2 2 2 2
Vi _ 2+4ZAy22+7-ZAy22 +ZAy22(ZAy22—ZAy12/y11)
E A
The reflectionless property is realized if
2
Yiyee = Y12 Q)

for then Vi/E=1%, and port 1 is matched. In fact, by a
well-known theorem?® on the properties of a directional
coupler, all four ports are matched.

Eq. (7) restricts the structure of the two-terminal net-
work to be one whose usual open circuit impedance

5 The theorem states that if a symmetrical four-port possesses the
directional property and is matched at one of its ports, all four ports
are matched.

Fig. 2-—The simplest realization of the shunt two-port.

parameters do not exist. The simplest realization of the
network is one which has only series admittance as
shown in Fig. 2,

Using (6) and (7), we find the other two transfer
voltage ratios to be

Vs j 1 i 1
e =, (®
E 2 14 Ziye 2 1+ Zgyn
Vs _ 1 TB ZAyzz
E 2 Z4a 1+ ZAy22
1 73_ ZByu
=-S5V ©)

2 Zs 1+ ZByu

It is seen that the two voltages are 90° out of phase
—a well-known property of directional couplers. More-
over, let P, be the power delivered to the load Z4 at
port 2 and P; be that to Zp at port 3. Then using (8)
and (9), we have

E2

Py Py

= constant.
A

The two transfer characteristics are therefore comple-
ments of each other. In particular, if yy is a simple
resonant circuit, V,/E exhibits a band elimination char-
acteristic while V3/E one of the bandpass.

The above analysis shows that a directional filter is
completely characterized by one parameter, the sus-
ceptance function s (or alternately, yi), as asserted
earlier. Except for the factor —j, in all aspects, V3/E as
given by (8) is much like the transfer function of a con-
stant-resistance bridge-T network.®

CASCADE DirEcTIONAL FILTER

If the two-port network parameters satisfy (6) and
(7), the ABCD matrix, M, is simplified to the following:

. *H. W. Bode, “Network Analysis and Feedback Amplifier De-
sign,” D. Van Nostrand Co., New York, N. Y., p. 272; 19435,
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1 ; Zs
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If we are to connect a transmission line of length
iN to port 1 and one 2\ to port 4 (Fig. 3), the over-all
ABCD matrix becomes
'Z—
1 0 —Z4ZBY11 Z4Zpyn —
Za
Zz
0 1 Z4Z sy N —Z*yu
P = L 4 (11)
Zg Zg
— Z yu —iu Z 1 0
Zs
L——yu Z — Y1 0 1 ]
which is of the form
I Dy, Note that DE=0, and ED=0.
[ :' Let us next cascade N—1 such structures, the first
Eyn [ characterized by Pi, the second P, etc. The over-all
where matrix becomes
_1 0 I L) 4
I = B y
o 1] PN—~1PN—2""P2P1—|:Ey/ [:]
B Zp
—Z423 YAVAS — where
D= T Za
B 9 e ) (N1
LZAZB /‘/Z— —Z5* YYo=y oy -+
A
Zs 75 Finally, to (N —1) such structures we must add, at the
[ 7 A end, one more directional filter to complete an N-section
E= — 4 4 cascade directional filter. The over-all network is shown
Zs { in Fig. 4 and the over-all generalized ABCD matrix is
Za given by
— -Z—
ZpY 2.V ‘ —Za 0 ]
ZA
Zs
"‘ZBY /‘/—"— _ZBY 0 ZB
MPy_.P P M[I Dy,] ' 4 (12)
e ey 1 ! 0 ZsY ZYW’;
ZA B B ZA
1 Zs
i 0 — ZsY 4/ ZE —Z5Y
Zg Za .
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Fig. 3—One unit of a cascade directional filter.
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Fig. 4—An N-section cascade directional filter.
where

TR NR.

Comparing (12) with the ABCD matrix for one direc-
tional filter, we see that both are the same except yn
in (10) is replaced by Y. Therefore the cascade direc-
tional filter is equivalent to one directional filter whose
susceptance function yu (or ¥se) is the sum of the sus-
ceptance functions of the component directional filters.
The voltage ratios for a cascade directional filter are

Vi
—=0
B
Vi 1
T 2
Ve _ 4 L (13)
E 2 14+ Ze[y® + - -+ 4
1 JZ nbieas
PR A TR T T i

Egs. (13) and (14) suggest that in synthesis, the de-
sired susceptance Y should be expanded in the Foster’s
partial fraction form, each fraction being realized by
one directional filter whose yy is a simple resonant cir-
cuit.

In the special case in which all a4’s are identical
resonant circuits, the loaded Q of an N-section cascade
directional filter is 1/N times the loaded Q of one direc-
tional filter.

REMARKS

This paper has considered only one particular way
of cascading the directional filters, namely, they are
separated by two sections of transmission line A and
2XA long as shown in Fig. 3. With different lengths, the
over-all four-port may have other interesting prop-
erties.
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The analysis given here is applicable only to direc-
tional filters which admit the equivalent circuit repre-
sentation shown in Fig. 1. As evident from the figure,
the unavoidable junction effect in a practical realization
has been completely ignored. Moreover, the length of
the sections of transmission line may be frequency de-
pendent, as in the case of a hollow guide. In that case,
the results contained here are valid only in the “im-
mediate” neighborhood of the average resonant fre-
quency of the various ¥’s. A complete analysis is very
complicated even for first-order approximation. We
shall leave this problem to an enterprising graduate stu-
dent.

ArPENDIX I

DerivaTiON oOF (2)

With reference to Fig. 1, the two series two-ports,
which are sections of transmission line A and 2\ long,
are characterized by their respective ABCD matrix as

follows:
l:VzA] _ ':AA BA:I l:VlA:l
Ioy Ca Dadlln
0 —3Z47 [ V14
= 1 (15)
e 0 I
¥ Zs 14
[Vzg] _ I:A.B BB:, [Vw:l
Iz Cs Dplllp
0  4Zs[Vis
= 1 . (16)
i — 0 I
J Za 1B

-

As stated in the text, let the two identical shunt two-
ports be characterized by the short-circuit admittance

parameters:
Iy Vit Yi2 Vie
[Izc:l - [yn yzz] [Vw:'
Iip yu Y[ Vip
eal= 0 2]

The terminal conditions are

(17

(18)

VlA = VZC = Vl
Voa = Vap =V,
Vig = Vie = Vs
Vop = Vip = V4
IlA = Il - 120
Iy = Tea — Iop
IIB = I3 - Ilc’
Iy = Ip — Inp. (19)
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Fig. 5—The signal flow graph of a directional filter (see Fig. 1).

Algebraic manipulation of (15)—(19) to eliminate all
variables except Vi, Ve, Vi, Vi, Iy, I, I3 and I4 leads to
(2) in the text. Alternately, one can employ the tech-
nique of signal flow graph.”:® Fig. 5 shows the signal
flow graph which corresponds to (15)—(19). Eq. (2) is
obtained by finding the “gains” in the following man-
ner:

Ay = gain from Vi to Ve = jZ4yae

Ays = gain from V; to Ve = jZay1
By, = gainfrom Iy toVy= —jZa
By = gain from I, to Ve = 0.

AprpPENDIX 11
DERIVATION OF (4)—(9)

The constraints given by (3), which are the terminat-
ing conditions on each port, are

Vi=E—1Z4
Vo= Zals

Vs = — Zgl;
Vai= Zpls.

Using these equations and those expressed by (2), one

7'S. Mason, “Properties of signal flow graph,” Proc. IRE, vol. 41,
pp. 1144-1156; September, 1953,

8 S, Mason, “Further properties of signal flow graph,” Proc. IRE,
wol. 44, pp. 920-926; July, 1956.
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Fig. 6—The signal flow graph of a terminated directional filter.
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Fig. 7—The simplified version of Fig. 6.

can eliminate all current variables and obtain a set of
four equations in four unknowns, Vi, Vs, Vs, Vi Solving
for each in terms of E, we have (4)—(9). The algebra is
straightforward though extremely involved. The author
is convinced that the signal flow graph technique is
superior.

With reference to Fig. 5, we first invert’ the paths
from Vs to I; and from V, to I;. Adding the constraints
of (3) to the “inverted” flow graph, we have Fig. 6.

Fig. 6 can be simplified, and the final form is shown
in Fig. 7, from which the various “gains” as expressed
by (4)—(9) are obtained by inspection.




